51 research outputs found

    Amphibian Contributions to Ecosystem Services

    Get PDF
    Ecosystems provide essential services for human society, which include provisioning, regulating, cultural, and supporting services. Amphibians provide provisioning services by serving as a food source for some human societies, especially in Southeast Asia. They also serve as models in medical research and provide potential for new pharmaceuticals such as analgesics and anti-viral drugs derived from skin secretions. Amphibians contribute to regulating services by reducing mosquito recruitment from ephemeral wetlands, potentially controlling other pest species, and indirectly through predation of insect pollinators. Often neglected, ecosystems also provide cultural services to human societies that increase the quality of human life through recreation, religion, spirituality, and aesthetics. As an abundant and diverse class of vertebrates, amphibians also play prominent roles in the culture of human societies through pathways such as mythology, literature, and art. Most research on the role of amphibians in ecosystems has been on their contribution to supporting services. This is also the area where amphibians are likely to have the largest contribution to ecosystem services. Supporting services have structural (e.g., habitat) and functional (e.g., ecosystem functions and processes) components. Amphibians can affect ecosystem structure through soil burrowing and aquatic bioturbation and ecosystem functions such as decomposition and nutrient cycling through waste excretion and indirectly through predatory changes in the food web. They also can control primary production in aquatic ecosystems through direct consumption and nutrient cycling. Unfortunately, amphibians are experiencing major declines and humans may be losing associated ecosystem services. It is important to understand how declines affect ecosystem services for human societies, but these declines can also serve as natural experiments to understand the role of amphibians in ecosystems

    Effects of Red-Backed Salamanders on Ecosystem Functions

    Get PDF
    Ecosystems provide a vast array of services for human societies, but understanding how various organisms contribute to the functions that maintain these services remains an important ecological challenge. Predators can affect ecosystem functions through a combination of top-down trophic cascades and bottom-up effects on nutrient dynamics. As the most abundant vertebrate predator in many eastern US forests, woodland salamanders (Plethodon spp.) likely affect ecosystems functions. We examined the effects of red-backed salamanders (Plethodon cinereus) on a variety of forest ecosystem functions using a combined approach of large-scale salamander removals (314-m2 plots) and small-scale enclosures (2 m2) where we explicitly manipulated salamander density (0, 0.5, 1, 2, 4 m−2). In these experiments, we measured the rates of litter and wood decomposition, potential nitrogen mineralization and nitrification rates, acorn germination, and foliar insect damage on red oak seedlings. Across both experimental venues, we found no significant effect of red-backed salamanders on any of the ecosystem functions. We also found no effect of salamanders on intraguild predator abundance (carabid beetles, centipedes, spiders). Our study adds to the already conflicting evidence on effects of red-backed salamander and other amphibians on terrestrial ecosystem functions. It appears likely that the impact of terrestrial amphibians on ecosystem functions is context dependent. Future research would benefit from explicitly examining terrestrial amphibian effects on ecosystem functions under a variety of environmental conditions and in different forest types

    An Experimental Test of Buffer Utility as a Technique for Managing Pool-Breeding Amphibians

    Get PDF
    Vegetated buffers are used extensively to manage wetland-dependent wildlife. Despite widespread application, buffer utility has not been experimentally validated for most species. To address this gap, we conducted a six-year, landscape-scale experiment, testing how buffers of different widths affect the demographic structure of two amphibian species at 11 ephemeral pools in a working forest of the northeastern U.S. We randomly assigned each pool to one of three treatments (i.e., reference, 100m buffer, 30m buffer) and clearcut to create buffers. We captured all spotted salamanders and wood frogs breeding in each pool and examined the impacts of treatment and hydroperiod on breeding-population abundance, sex ratio, and recapture rate. The negative effects of clearcutting tended to increase as forest-buffer width decreased and be strongest for salamanders and when other stressors were present (e.g., at short-hydroperiod pools). Recapture rates were reduced in the 30m, but not 100m, treatment. Throughout the experiment for frogs, and during the first year post-cut for salamanders, the predicted mean proportion of recaptured adults in the 30m treatment was only 62% and 40%, respectively, of that in the reference treatment. Frog sex ratio and abundance did not differ across treatments, but salamander sex ratios were increasingly male-biased in both cut treatments. By the final year, there were on average, only about 40% and 65% as many females predicted in the 100m and 30m treatments, respectively, compared to the first year. Breeding salamanders at short-hydroperiod pools were about 10% as abundant in the 100m versus reference treatment. Our study demonstrates that buffers partially mitigate the impacts of habitat disturbance on wetland-dependent amphibians, but buffer width and hydroperiod critically mediate that process. We provide the first experimental evidence showing that 30-m-wide buffers may be insufficient for maintaining resilient breeding populations of pool-dependent amphibians, at least during the first six years post-disturbance

    Fine-scale population structure and asymmetrical dispersal in an obligate salt-marsh passerine, the Saltmarsh Sparrow (Ammodramus Caudacutus)

    Get PDF
    Understanding the spatial scale of gene flow can yield valuable insight into the ecology of an organism and guide conservation strategies. Fine-scale genetic structure is uncommon in migratory passerines because of their high vagility and presumed high dispersal abilities. Aspects of the behavior and ecology of some migratory species, however, may promote structure on a finer scale in comparison to their mobility. We investigated population genetic structure in the Saltmarsh Sparrow (Ammodramus caudacutus), a migratory passerine that breeds along the northeastern coast of the United States, where it is restricted exclusively to a narrow strip of patchily distributed tidal marsh habitat. Using genotyping with 10 microsatellite loci, we detected weak but significant population structure among Saltmarsh Sparrows from nine marshes on the breeding grounds between Scarborough, Maine, and Oceanside, New York. Genetic variation among marshes was largely consistent with a pattern of isolation by distance, with some exceptions. One inland marsh was genetically divergent despite its proximity to other sampled marshes, which suggests that mechanisms besides geographic distance influence population genetic structure. Bayesian clustering, multivariate analyses, and assignment tests supported a population structure consisting of five groups. Estimates of migration rates indicated variation in gene flow among marshes, which suggests asymmetrical dispersal and possible source-sink population dynamics. The genetic structure that we found in Saltmarsh Sparrows may result from natal philopatry and breeding-site fidelity, combined with restricted dispersal due to obligate dependence on a patchy habitat. Our findings suggest that fine-scale population structure may be important in some migratory passerines. Received 12 July 2011, accepted 1 February 2012

    Anuran responses to spatial patterns of agricultural landscapes in Argentina

    Get PDF
    Context: Amphibians are declining worldwide and land use change to agriculture is recognized as a leading cause. Argentina is undergoing an agriculturalization process with rapid changes in landscape structure. Objectives: We evaluated anuran response to landscape composition and configuration in two landscapes of east-central Argentina with different degrees of agriculturalization. We identified sensitive species and evaluated landscape influence on communities and individual species at two spatial scales. Methods: We compared anuran richness, frequency of occurrence, and activity between landscapes using call surveys data from 120 sampling points from 2007 to 2009. We evaluated anuran responses to landscape structure variables estimated within 250 and 500-m radius buffers using canonical correspondence analysis and multimodel inference from a set of candidate models. Results: Anuran richness was lower in the landscape with greater level of agriculturalization with reduced amount of forest cover and stream length. This pattern was driven by the lower occurrence and calling activity of seven out of the sixteen recorded species. Four species responded positively to the amount of forest cover and stream habitat. Three species responded positively to forest cohesion and negatively to rural housing. Two responded negatively to crop area and diversity of cover classes. Conclusions: Anurans within agricultural landscapes of east-central Argentina are responding to landscape structure. Responses varied depending on species and study scale. Life-history traits contribute to responses differences. Our study offers a better understanding of landscape effects on anurans and can be used for land management in other areas experiencing a similar agriculturalization process.Facultad de Ciencias ExactasCentro de Investigaciones del Medioambient

    Anuran responses to spatial patterns of agricultural landscapes in Argentina

    Get PDF
    Context: Amphibians are declining worldwide and land use change to agriculture is recognized as a leading cause. Argentina is undergoing an agriculturalization process with rapid changes in landscape structure. Objectives: We evaluated anuran response to landscape composition and configuration in two landscapes of east-central Argentina with different degrees of agriculturalization. We identified sensitive species and evaluated landscape influence on communities and individual species at two spatial scales. Methods: We compared anuran richness, frequency of occurrence, and activity between landscapes using call surveys data from 120 sampling points from 2007 to 2009. We evaluated anuran responses to landscape structure variables estimated within 250 and 500-m radius buffers using canonical correspondence analysis and multimodel inference from a set of candidate models. Results: Anuran richness was lower in the landscape with greater level of agriculturalization with reduced amount of forest cover and stream length. This pattern was driven by the lower occurrence and calling activity of seven out of the sixteen recorded species. Four species responded positively to the amount of forest cover and stream habitat. Three species responded positively to forest cohesion and negatively to rural housing. Two responded negatively to crop area and diversity of cover classes. Conclusions: Anurans within agricultural landscapes of east-central Argentina are responding to landscape structure. Responses varied depending on species and study scale. Life-history traits contribute to responses differences. Our study offers a better understanding of landscape effects on anurans and can be used for land management in other areas experiencing a similar agriculturalization process.Facultad de Ciencias ExactasCentro de Investigaciones del Medioambient

    Neurologic Involvement in Children and Adolescents Hospitalized in the United States for COVID-19 or Multisystem Inflammatory Syndrome

    Get PDF
    This article is made available for unrestricted research re-use and secondary analysis in any form or by any means with acknowledgement of the original source. These permissions are granted for the duration of the World Health Organization (WHO) declaration of COVID-19 as a global pandemic.Importance Coronavirus disease 2019 (COVID-19) affects the nervous system in adult patients. The spectrum of neurologic involvement in children and adolescents is unclear. Objective To understand the range and severity of neurologic involvement among children and adolescents associated with COVID-19. Setting, Design, and Participants Case series of patients (age <21 years) hospitalized between March 15, 2020, and December 15, 2020, with positive severe acute respiratory syndrome coronavirus 2 test result (reverse transcriptase-polymerase chain reaction and/or antibody) at 61 US hospitals in the Overcoming COVID-19 public health registry, including 616 (36%) meeting criteria for multisystem inflammatory syndrome in children. Patients with neurologic involvement had acute neurologic signs, symptoms, or diseases on presentation or during hospitalization. Life-threatening involvement was adjudicated by experts based on clinical and/or neuroradiologic features. Exposures Severe acute respiratory syndrome coronavirus 2. Main Outcomes and Measures Type and severity of neurologic involvement, laboratory and imaging data, and outcomes (death or survival with new neurologic deficits) at hospital discharge. Results Of 1695 patients (909 [54%] male; median [interquartile range] age, 9.1 [2.4-15.3] years), 365 (22%) from 52 sites had documented neurologic involvement. Patients with neurologic involvement were more likely to have underlying neurologic disorders (81 of 365 [22%]) compared with those without (113 of 1330 [8%]), but a similar number were previously healthy (195 [53%] vs 723 [54%]) and met criteria for multisystem inflammatory syndrome in children (126 [35%] vs 490 [37%]). Among those with neurologic involvement, 322 (88%) had transient symptoms and survived, and 43 (12%) developed life-threatening conditions clinically adjudicated to be associated with COVID-19, including severe encephalopathy (n = 15; 5 with splenial lesions), stroke (n = 12), central nervous system infection/demyelination (n = 8), Guillain-Barré syndrome/variants (n = 4), and acute fulminant cerebral edema (n = 4). Compared with those without life-threatening conditions (n = 322), those with life-threatening neurologic conditions had higher neutrophil-to-lymphocyte ratios (median, 12.2 vs 4.4) and higher reported frequency of D-dimer greater than 3 μg/mL fibrinogen equivalent units (21 [49%] vs 72 [22%]). Of 43 patients who developed COVID-19–related life-threatening neurologic involvement, 17 survivors (40%) had new neurologic deficits at hospital discharge, and 11 patients (26%) died. Conclusions and Relevance In this study, many children and adolescents hospitalized for COVID-19 or multisystem inflammatory syndrome in children had neurologic involvement, mostly transient symptoms. A range of life-threatening and fatal neurologic conditions associated with COVID-19 infrequently occurred. Effects on long-term neurodevelopmental outcomes are unknown

    Trout affect the density, activity and feeding of a larval plethodontid salamander

    No full text
    1. Ecologists have struggled to describe general patterns in the impacts of predators on stream prey, particularly at large, realistic spatial and temporal scales. Among the confounding variables in many systems is the presence of multiple predators whose interactions can be complex and unpredictable. 2. We studied the interactions between brook trout (Salvelinus fontinalis) and larval two-lined salamanders (Eurycea bislineata), two dominant vertebrate predators in New England stream systems, by examining patterns of two-lined salamander abundance in stream reaches above and below waterfalls that are barriers to fish dispersal, by measuring the effects of trout on salamander density and activity using a large-scale manipulation of brook trout presence, and by conducting a small-scale laboratory experiment to study how brook trout and larval two-lined salamanders affect each other\u27s prey consumption. 3. We captured more salamanders above waterfalls, in the absence of trout, than below waterfalls where trout were present. Salamander density and daytime activity decreased following trout addition to streams, and salamander activity shifted from aperiodic to more nocturnal with fish. Analysis of stomach contents from our laboratory experiment revealed that salamanders eat fewer prey with trout, but trout eat more prey in the presence of salamanders. 4. We suggest that as predators in streams, salamanders can influence invertebrate prey communities both directly and through density- and trait-mediated interactions with other predators

    Buffer-Mediated Effects of Clearcutting on In-Pool Amphibian Productivity: Can Aquatic Processes Compensate for Terrestrial Habitat Disturbance?

    No full text
    Natural resource extraction and wildlife conservation are often perceived as incompatible. For wetland-dependent amphibians, forested buffers may mitigate timber-harvest impacts, but little empirical research has focused on buffers around lentic habitats. We conducted a landscape experiment to examine how spotted salamander and wood frog reproductive output (i.e., eggmass and metamorph production) respond to clearcutting mediated by buffers of different widths (i.e., uncut, 30 m buffer, 100 m buffer) at ephemeral pools in an industrial forest. We found complex interactions between buffer treatment and reproductive output, which were strongly mediated by hydroperiod. Overall, reproductive output was most sensitive at 30 m-buffer pools and for salamanders, but responses diverged across productivity metrics even within these categories. Notably, for both cut treatments over time, while salamander eggmass abundance decreased, metamorph productivity (i.e., snout-vent length [SVL] and abundance) tended to increase. For example, average metamorph SVLs were predicted to lengthen between 0.2 and 0.4 mm per year post-cut. Additionally, typical relationships between reproductive output and hydroperiod (as indicated by the reference treatment) were disrupted for both species in both cut treatments. For example, long-hydroperiod pools produced more salamander metamorphs than short-hydroperiod pools in both the reference and 30 m-buffer treatments, but the rate of increase was lower in the 30 m-buffer treatment such that a long-hydroperiod pool in the reference treatment was predicted to produce, on average, 24 more metamorphs than a similar pool in the 30 m-buffer treatment. From a conservation perspective, our results highlight the importance of evaluating both terrestrial and aquatic responses to terrestrial habitat disturbance, since responses may be reinforcing (i.e., exert similarly positive or negative effects, with the potential for amplification in the aquatic habitat) or decoupled (i.e., operate independently or be negatively correlated, with responses in the aquatic habitat potentially dampening or counteracting responses in the terrestrial habitat)
    • …
    corecore